领取全套备考资料
公务员考试行测试卷中数量关系是必考题型,主要测查考生理解、把握事物间量化关系和解决数量关系问题的技能,主要涉及数字和数据关系的分析、推理、判断、运算等,已经成为广大考生最为头疼的部分。在此,华智教育专家带领大家学习一种方法来应对它—— 巧用“质合性”。
一、质合性概述
首先来了解一下什么是质数、合数?质数就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数或素数;除了1和它本身两个约数外,还有其它约数的数,叫合数。而1既不是质数也不是合数,因为它的约数有且只有1这一个约数。
我们所运用的“质合性”,就是运用质数、合数的数字特点来解题。
比如说:题干中的表述是“a是一个质数”,而通过简单判定,“a是一个偶数”,那么,这个时候我们可以完全确定,a就是数字2。因为在正整数范围内的质合数中,只有2是唯一的质偶数。这是质合数的性质之一,也是我们常用来解题的重要环节。
二、质合性如何解题
接下来我们看一下如何运用“质合性”求解数量关系题。
【例题】某儿童艺术培训中心有5名钢琴教师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学生数量都是质数。后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?
A. 36 B. 37 C. 39 D. 41
【答案】D。
【解析】假设每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,根据“培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完”,得到的方程式是5x+6y=76。看完所有的题干条件,我们发现,现在这个方程式是唯一的一个等式,而且是一元二次方程,明显这是“不定方程”的题目。那么,这个方程该如何得到“解”就是我们这道题求值的重点。
既然题干中说明“每位老师所带的学生数量都是质数”, 即x、y均为质数,出现了质合性,那么来考虑一下奇偶性。76是一个偶数,6y也是一个偶数,那么5x肯定是一个偶数,即告诉我们x是一个偶数,而x又是一个质数。根据前文所述,x就是数字2,带入方则y=11。培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员41人。因此答案选择D。
那这个题目也可以使用代入排除法来快速确定答案。
假设每个钢琴教师带x个学生,每个拉丁舞教师带y个学生,得到的方程式是5x+6y=76(x、y均为质数)。其中x的取值可能有2、3、5、7、11。从x=2验证,得到y=11,也是质数。可以看出x=2,y=11是这个方程的解,且满足题意,这样就能得到正确答案。代入之后答案是D项。
专家认为,运用数的质合性可以快速确定方程的解。由此可以看出,运用数的质合性来解题确实很实用。考生在做题过程中,如果发现题中数据要求为质数,就可以考虑运用质合性来帮助我们选出正确选项。
桂老师
15921932258
李老师
13585512509
刘老师
17717222736
汪老师
13391256779
王老师
13585512605
周老师
19916744766
吴老师
18001770796
于老师
19946127488
樊老师
18917874588
陈老师
18117127207
童老师
18321250548
张老师
18017809371
廖老师
17701706182
陈老师
13918156994
周老师
15000167376
小小老师
18917193646
章老师
18016289781
宁老师
19946094266
张老师
18049795126